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Abstract: In this paper, we generalize the concept of w-interpolative Ciri¢-Reich-
Rus Type Contractions in the framework of M-metric spaces, to find the fixed
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tration is provided to support our applicability of obtained results.
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1. Introduction and Preliminaries

In 2014, Mehdi Asadi et al. [4] introduced the concept of M-metric space which
has a nonzero self distance, as a generalization of metric space. Frdal Karapinar
[4] established interpolative contraction to prove existence of fixed points in Metric
space. He states that: ”For a metric space (X, d), the self mapping T : X — X is
said to be an interpolative kannan type contraction, if there are constants A € [0, 1)
and « € (0,1) such that

d(Tx, Ty) < Ad(x, Tx)]*[d(y, Ty)]*,

for all x,y € X with x # Tz.”
In this paper we wield such interpolative contraction using w- admissible functions.
The notion of w-orbital admissible maps was introduced by Popescu as a refinement
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of the concept of a-admissible maps of Samet et al. [15]. Hassen Aydi initiate w-
interpolative Ciri¢-Reich-Rus Type in [1] to prove the existence of fixed points in
the framework of complete metric space.

In this paper, we generalize the existence of fixed points in M-metric space using
w-interpolative Cirié¢-Reich-Rus Type. For more studies of fixed point results for
contraction refer [6-14] and reference therein.

In this section we will recall the basic notions of M-metric space and Ciri¢-Reich-
Rus-Type contraction. The following notion will be used in the presentation,

Definition 1.1. [4] Let X be a nonempty set. If the function m : X x X — R*
satisfies the following conditions for all x,y,z € X.

Lom(z,z) = m(y,y) = m(z,y) <= v =y,

2. myy < m(z,y),

3. m(z,y) = m(y,z),

4 (m(@,y) = may) < (m(x, 2) = maz) + (m(z,y) = mzy),
Then the pair (X, m) is called M-metric space, where

1. myy = min{m(z,z), m(y,y)}

2. My, == max{m(xz,x),m(y,y)}.
Remark 1.2. [4] For every z,y € X

1. 0 < Myy +mgy =m(z,z) + m(y,y),

2. 0 < My — myy = |m(z,x) —m(y,y)],

3. Myy — myy < (Myy —miy,) + (May — mey).

Example 1.3. Let X = [0,00). Then m(z,y) = L _2|_ 4

Example 1.4. [4] Let (X, m) be an M-metric space. Put

on X is an M-metric space.

L. m¥(z,y) = m(x,y) — 2mygy + My,

2. m®(z,y) = m(z,y) — my, when x # y and m*(z,y) =0if x = y.
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5,m(1,2) =m(2,1) = 10,m(1,3) =m(3,1) = 7,m(3,2) =m
is M-metric space.

In [4], describes each m metric m on X generates a Ty topology 7, on X.
The set {B,(z,¢) : © € X,e > 0}, where B, (z,¢) = {y € X : m(x,y) < myy + €},
for all z € X and € > 0, forms a base of 7,.

Definition 1.6. Let (X, m) be a M-metric space. Then:

1. A sequence {x,} in a M-metric space (X, m) converges to a point x € X if
and only if

Jirilo(m(xn, T) — My, ) = 0. (1)

2. A sequence {x,} in a M—metric space (X, m) is called an m— cauchy sequence

if

lim (m(Zn, Tm) — Mepe,, ), M (My, 0, — Ma,2,,)

exist. (and are finite)

3. An M- metric space (X, m) is said to be complete if every m-Cauchy sequence
{z,} in X converges, with respect to T,,, to a point x € X such that

(lim (m(zy, 1) =ma,0) =0 & lim (M, = ma,a) = 0)

Lemma 1.7. [4] Assume that z, — x and y, — y as n — oo in an M- metric
space (X, m). Then

r}l_{go(m(xm Yn) = Many,) = M(T,Y) = May.

Proof. We have
[Ty Yn) — M) — (M2, y) — Mgy)| < (M0, T) — M) + (MY, Yn) — My, )
Lemma 1.8. [4] Assume that x,, — x as n — oo in an M— metric space (X, m).
Then lim (m(xn,y) — My,y) = M(T,Y) — Myy.
n—r0o0

Lemma 1.9. Assume that x, — x and x,, — y as n — oo in an M —metric space
(X,m). Then x =y.
Lemma 1.10. Let {z,} be a sequence in an M-metric space (X, m), such that
Jre|0,1),

m(Tpi1, Tn) < rm(x,, xp—1), Yn €N (2)

Then
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1. lim m(zp,, z,1) =0,
n—oo

2. lim m(x,,z,) =0,
n—oo

3. lim my,, ., =0,
n—oo

4. {x,} is an m-Cauchy sequence.

Let us denote the set of all non-decreasing self-mapping ¢ on [0, 00) such that:
Zw"(t) < oo for each t >0,
n=1

by ¥ . Further ¢ € ¥, we have 1(0) = 0 and ¥ (t) < t for each ¢t > 0.

Definition 1.11. Let w : X x X — [0,00) be a mapping and X # (). A self-
mapping T : X — X is said to be an w-orbital admissible if for all s € X, we
have

w(s,Ts) >1 = w(Ts,Ts*) > 1.

Definition 1.12. Let (X,d) be a metric space. The map T : X — X is said to
be an w-interpolative Cirié-Reich-Rus-type contraction if there exist ¢ € ¥, w :
X x X — [0,00) and positive reals v, > 0, verifying v + f < 1, such that:

w(x, y)d(T.CIj, Ty) <9y <[d($, y)]ﬂ.[d(ﬂf, T:E)]V[d(y’ Ty)]1—7—5> (3)

forall z,y € X Fixzp(X), where Fizp(X) denotes the set of all fized points of T.
2. Main Results

Theorem 2.1. Suppose a continuous self mapping T : X — X is w-orbital admis-
sible and forms an w-interpolative éirié—Reich—Rus—type contraction on a complete
M -metric space (X,m). If there exists xo € X such that w(xo, Txg) > 1, then T
has a fixed point in X.
Proof. Let zy € X be a point such that w(xg, Txg) > 1. Let {z,,} be the Picard
sequence defined by x,, = T"(zo),n > 0.
If for some ny, we have z,,, = ©,,4+1, then x,, is a fixed point of T, which ends the
proof. Otherwise, x, # x,41, for each n > 0. We have w(zg, 1) > 1. Since T is
w-orbital admissible,

w(zy, x9) = w(Txg, Tay) > 1.

After some iteration
w(xy, Tpy1) > 1 for all n > 0.
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Consider x = x,, and y = x,,_
From (2), we have

M(Tny1, Tn) < W(@Tn, o)) (T2, T2p_1)
< ¥ [m(xmxn—l)]ﬁ-[m@mTfn)]”.[d(xn_l,Tg:n_l)]PV*ﬁ)
= [m(wn, 2o))[m(n, 2a)] (201, In)]1_7_5>
= [m(mmmnﬂ)]v-[m(l’n,l,xn)]l_V)
Hence,
s tn) <6 (I o )] a

By the property of ¢ (t) < t for each ¢ > 0.
m@azn) < 0@, 2] (@, 7))
< [m(@n—1, 20)] 7 (0, )]
Therefore
M(Tn, Tpi1) < m(xp_1,2,) for all n > 1. (5)

so that the sequence {m(z,_1,x,)} is decreasing.
Now, we will prove that

lim m(x,_1,2,) =0.
n—oo

Suppose that lim m(z,_1,x,) =1, where I > 0.

From (4), we gvﬁ(foget,

[ (@1, )] 7 [0, T 1)) < (1, 20)] T M (201, 20) ] = M1, ),
So using (3) and properties of 1) gives

M (i1, Tn) < ¢<[m(mnv Tpi1)]" (1, zn)]liw> < ¢(m(x,-1,7,)) By repeating
this argument,

m(xn—&-l?J:n) S ¢(m(xn—17xn)) S ¢2<m($n—17$n)) S e S wn(m($n—1>$n)) (6)
When n — oo in (5) and using the property of ¥ function, lim ¢"(¢) = 0 for each
n—o0
t > 0, we deduce that [ = 0, that is

lim m(x,, x,1) =0 (7)
n—oo

Next we will prove that {z,} in m-Cauchy sequence in (X, m).

We have lim m(x,,x,41) = 0.
n—oo

0 < Mypgns < M(Ty Tpg1) = lim m(z,, x,) = 0.
n—oo

and
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My = MIN{M( Ly, T), M(Tpi1, Tpy1)} = nh—>Holo m(zp, r,) = 0.
On the other hand,

M, w,, = min{m(x,, x,), m(z,, ,)} = n}ir_rgoo My, 2, = 0.

So, 7

lim (M, ., — Mg,x,,) = 0.
,M—00

We will show that

lim (m(x,, Tm) — Mg, z2,) = 0.
n,Mm—00

Define M*(x,y) = m(z,y) — myy, for all z,y € X.
If lim M*(x,,xm,) # 0, there exist € > 0 and {l;} C N such that
n,M—00
M*(zy,, xn,) > €.
Suppose that k is the smallest integer which satisfies above equation such that

M* (2,1, xp,) < €.

By Definition of M-metric space,
€ < M* (g, 2, ) < M* (21, wpp—1) + M (@11, Tpy) < M (20, 20,1) + €
Thus

lim M*(x;,, x,,) = €,
k—o0

which means
im (m(xy, Tny) — May, 2., ) = €.

k—00
On the other hand
Ji i, =0,
so we have
]}1_{20 m(xy,, Tn,) = €. (8)

By definition
M*(xlm xnk) < M*<xlk7 xlk+1> + M*<xlk+17 xnk) + M*(xnk+17 xnk)v
and

M (@41, Tng1) < M@y, 2yy11) + M (20, Ty ) + M (2041, Tny.)
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From the above equations we can conclude that
M* (g, 41, Tn, ) < M (21, 71, 41) (9)
taking the limit as k — oo, together with (6) and (7) we have
klgga m(mlk-i-lv :Bnk'f‘l) =€
Then, there exists ny € N such that for all £ > n; we have

€ €
m(zy,, Tn,) > 3 and m(xy, 41, Tpy41) > 3 > 0.

Since T is w-orbital, we have
w(zy,, Tp,,) > 1.

From the above argument,

(@, T (T, T < ([, @n) P Imle,, Tag ) m(ea,, Tan )7 7)
when k£ — oo,
w(‘rlk? xnk)m(Tmlk’ T:Enk) < ¢<E)
< €.
Since w(xy,, T, ) > 1 implies that m(T'x,,, T'v,, ) < € which is a contradiction, and
therefore {x,} in m-Cauchy sequence. Regarding the completeness of the M-metric
space (X, m), we deduce that there is some x € X so that

lim m(z,,x) = 0.
n—o0

Since T is continuous, we have r = lim z,,, = lim z, = T( lim xn> =Tz.
n—oo n—oo n—o0

Hence the theorem.

In the next theorem, we replace the continuity of 7" by using the following
weakened condition: If {a,} is a sequence in X such that w(a,, a,.+1) > 1 for each
n € Nand a, = a € X as n — 0o, then there exists {a,x)} from {a,} such that
wW(n k), a) > 1.

Theorem 2.2. Suppose a self mapping T : X — X is w-orbital admissible and
forms an w-interpolative C’z’m’é—Rez’ch—Rus—type contraction on a complete M -metric
space (X, m). Suppose that the above mentioned weakened condition is also fulfilled.
If there exists xy € X such that w(xg, Txo) > 1, then T has a fized point in X.

Proof. Let zp € X be a point such that w(xg, Txy) > 1. Let {x,,} be the Picard
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sequence defined by z, = T"(zo),n > 0.

If for some ng, we have z,,, = ,,+1, then z,, is a fixed point of 7', which ends the
proof. Otherwise, x, # x,41, for each n > 0. We have w(zg,z1) > 1. Since T is
w-orbital admissible,

w(zy, x9) = w(Txo, Taxy) > 1.

After some iteration
w(xy, Tpy1) > 1 for all n > 0.

Consider x = x,, and y = x,,_1
From (2), we have
m(l‘n—&-l’ xn) < W(xn’ xn—l)m(Txm Txn—l)

; (0 [m(xn,xn_1)]5.[m(zn,Tg;n)]v,[d(;gn_hTxn_l)]k%g)
0 (1, 20 ), ) s, )
Y|

M( Ly, Tp1)]? (201, xn)]l—v)

Hence,

m(ns1,20) < (M, 2] fm(ns, 2,)]'77) (10)

By the property of ¢ (t) <t for each ¢ > 0.
meaian) < 0@z (e, )]

< [m(@n—1, 20)] 7 (0, 20g)]?
Therefore

(T, Tpi1) < m(x,_1,2,) for all n > 1. (11)

so that the sequence {m(x,_1,x,)} is decreasing.
Now, we will prove that

lim m(z,_1,z,) = 0.
n—oo

Suppose that lim m(z,_1,x,) =, where [ > 0.

From (4), we gvﬁfoget,

[m(@n—1, )] 7 [0, Ty 1)]T < (01, 20)] 7 M (201, 20)] = M1, T0),
So using (3) and properties of ¢ gives

i1 n) < (@0 T )] (01, 22)[177) < W(m(@a-1,3)) By repeating
this argument,

M(Tpp1, Tn) < P(M(p_1, 7)) < ¢2(m(xn—1vmn)) < YT, ) (12)
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When n — oo in (5) and using the property of ¥ function, lim ¢™(¢) = 0 for each
n—oo
t > 0, we deduce that [ = 0, that is

Tim m(zp, 2np1) =0 (13)
By the similar argument of Theorem 2.1, we will prove that the sequence {x,} is
Cauchy. Suppose the weakened condition holds. Assume that x # T'x.
If 2,4y # Twpm for each k£ > 0. Due to the condition, there exists a partial sub-
sequence {Z,x)} of {,} such that w(x,u),x) > 1 for all k. Since {m(z,x),x)} —
0, {m(znw), Txnm} — 0 and m(x,Tx) > 0, there is N € N such that, for each
k>N,

M(Tny, ) < m(x, Tx) and m(zypy, Trpw)) < m(x, Tw).

Take x = ) and y = x in (2), we get that:
M(@ngy+1, TT) < W@y, 2)m(T (), T2)

V(M (Tnmys )P 1m(T 0y Tn)] [m(x, Ta)]=77F)
U([m(z, Tx))’.[m(z, To)] [m(z, Tx)]' 7 F)

w(m(x, Tx)).

Letting k — oo, we find that :

VANIVANVANRVAN

0<m(z,Tx) <Y(m(x,Tz)) < m(z,Tx),

which is a contradiction. Thus, x = Tz. Hence the theorem.

Corollary 2.3. Let T' be a self mapping on a complete M-metric space (X, m)
such that:

w(z, y)d(T, Ty) <4 ([d(x, )P [d(w, Tx)].[d(y, Ty)]l—v—ﬁ)

for all x,y ¢ Fixp(X), where 7.0 are positive reals verifying v + 5 < 1 and
w(z,y) = 1. Then, T has a fized point in X.
In the next corollary we consider 1(t) = At for some X € [0,1).

Corollary 2.4. Let T be a self mapping on a complete M-metric space (X, m)
such that:

(o )T, Ty) < \([de, ) e, T Ly, T )

for all x,y ¢ Fixp(X), where 7.0 are positive reals verifying v + 5 < 1 and
A€ [0,1)., and w(x,y) = 1. Then, T has a fized point in X.
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3. Consequences

In this section, we endeavor to learn existence and uniqueness of fixed points
in M —metric space through example which supports our result.

Example 3.1. Consider X = [0,1] and m : X x X — [0, 00) with m(x,y) = ‘ ;— Y
g 1
il if x € [O, —}
Then the mapping T : X — X is defined as T'(z) = ¢ 3 1 2 and
1 ifre (5,1]

3
21 ) |:07_:|
if x,y € 1

1 otherwise.

w(z,y) = with 1(t) = t where ¢ € .

In order to support our result, we will discuss this in three cases:
1
Case I: If x,y € [O, 5} then

wiz,y)m(Te,Ty) < b ([m(e,y)).Im(z, To)] . lm(y, Ty) )

2 2

(S ) < w(I 2 e S0 e Z17)
< ([ BT )

23:2 + 12 < @D([?)x + By}ﬁ' [333 + 932}7‘ [3y + y2} 175)
6 6 6 6
2, .2
1
v ; Lo< Bl o+ ) By + )0
1
Above inequality is always true whenever v+ 8 < 1 for all z,y € [O, 5} )

Case II: If z € [0, %} and y € (%, 1]

w(z,y)m(Tz,Ty) < w<[m(:c,y)]ﬂ.[m(;c,Tx)]v,[m(y,Ty)]l—v—ﬂ)

L) < el e T i 1P

< ([P )
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When v + 8 < 1, then T has a fixed point.
Case III:

1 .
Ifz,y € (57 1] then w(x,y) = 1 then (2) reduces to Interpolative Ciri¢-Reich-Rus-

Type contractions which guarantees fixed points for 7.
So, Fizp(X) ={0,1}.

1]
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